I attended The Data Incubator during Spring 2017. I earned a data science position with a hiring partner in the San Francisco financial district within three weeks of graduating. Below I enumerate the many aspects of The Data Incubator I found valuable.
Resume building:
Starting at the semi-finalist level, applicants are provided strategies for resume writing. With some careful thought, I was able to portray seemingly bland parts of my academic background as eye-catching resume bullet points. Time is also dedicated in the first days of the program for polishing resumes yet again before final submission to the employer-facing online resume book.
Professional head shot:
Prior to the program, Fellows and Scholars are advised to get a professional head shot. I had never done this before (or really had been aware of such services), but I realized it was an important part of going all in. While this can be expensive, Fellows who successfully join a partner company are reimbursed for the head shot (I was).
Structured curriculum and weekly miniprojects:
The data science curriculum includes lectures, daily coding challenges, and miniprojects. Weekly lectures are accompanied by IPython notebooks mixing text exposition with runnable code. There is a lot of lecture material to master every week, and persevering here helps with interviews and the miniprojects. The notebooks encapsulate the advanced features of scikit-learn, SQL, and big data tools (Hadoop, Spark), and they make for indispensable reference material after the program. The miniprojects are essentially problem sets and provide hands-on experience with these tools.
The capstone project:
This is meant to be an application of data science to a publicly available (or scrapable) data set that is ultimately presented as a web application. It is adisable to have a rough draft, or at least a strong start, on the project before beginning the program, so start thinking about this before applying. There are several upshots to doing well on the capstone: 1) You have a recent data project to talk about in interviews that is more substantive than any of the individual miniprojects, 2) Practice building a web app (e.g., with Flask) for deployment on cloud services (e.g., Heroku), 3) Practice pitching your project in weekly video updates; for these videos, I learned how to edit video/sound with Openshot and to splice in images and screen capture footage of my project.
Soft skills lectures and interview practice:
Soft skills lectures provide coaching for resume writing, onsite interviews, and salary negotiations. Weekly interview practice covers computer science and statistics problems of varying difficulty, both on pen/paper and in front of a whiteboard.
Summary:
The Data Incubator is an extremely worthwhile experience. The components of the program outlined above have a snowball-like cumulative effect at turning academics into viable industry job candidate, commensurate with the effort they put into preparation before and during the program.
September 13, 2017
Anonymous
Rating
Curriculum
Instructors
Job Assistance
Since I had always been in academic before taking TDI,
TDI is like a window to the industry, a bridge walking
me smoothly from the academic world to the industry one.
Through a series of activities like panel discussion and alumni party,
TDI offered me a great platform to know what kind of problems
companies are trying to solve, what skills they are looking for,
how the daily life looks like, etc. Moreover, TDI provides valuable
guidance in the whole process of job search, and last but not
the least, the chance to work with a bunch of very smart people.
March 14, 2018
Anonymous
Rating
Curriculum
Instructors
Job Assistance
I highly recommend this 8-weeks intensive training at The Data Incubator (TDI), because it really helped me to go deeper into data science field and get fully prepared for the essential skills to work in a big data industry.
As a PhD graduate in chemistry background, the transition from academia to industry is not easy. But fortunately, I attended TDI during Winter 2017, and I gained full stack from the program, including the cutting-edge analytics techniques, programming, machine learning, data visualization as well as business mindset. The networking with all other talented fellows is definitely a plus! Needless to say, my 1st data scientist job with a hiring partner in less than a month from graduation is the most valuable thing I got out of TDI!
March 16, 2018
Anonymous
Rating
Curriculum
Instructors
Job Assistance
As a recent graduate of the Winter 2018 cohort, going through the 8-week intensive data science training at The Data Incubator has taught me a great deal about various data science tools and has prepared me with the essential skills to thrive at my first data science job. I’ve gained a full data science stack, such as creating a web application, web-scraping, data cleaning, exploratory analysis and visualization, SQL, machine-learning, big data tools, and cloud computing, as well as a business mindset. More importantly, networking with and learning from other talented and brilliant fellows has taught me a lot about myself and how to become a great data scientist. More importantly, I made a lot of connections that I can see will be long term.
April 20, 2018
Anonymous
Rating
Curriculum
Instructors
Job Assistance
Completing miniprojects on diverse and up-to-date topics really helped me to be confident about how to apply my technical skills on solving problems in practical situations. The hands-on experience from end to end, especially the relevance of the techniques to that in industry, is going to be a long term benefit for me and certainly for any previous and current fellow.
The opportunity to have conversation and build relationship with different companies. This is not only for landing a job but more for a healthy business relationship in a long term. Getting the benefit from the bridge built up by The Data Incubator between fellows and partners is one thing. Another important goal of networking is for future communication and collaborations. Here comes our Fellows. I kept in touch with some of the fellows after we finish the program and we keep each other posted. It is invaluable having fellows experience the transition from academia to industry together including sharing thoughts and helping each other.
May 17, 2018
Anonymous
Rating
Curriculum
Instructors
Job Assistance
The application process can be daunting and intimidating, however, each step has its reasons. This makes each cohort learn and progress in a homogeneous pace, which is key to a successful completion of the TDI.
I was part of the D.C 2017 winter cohort and the 8 weeks were key to position myself as a Data Scientist in the industry. You share and work collaboratively with the rest of the cohort, making it invaluable because you are not only learning from the diverse curriculum but also from your peers. At the end of the day, Data Science is both a Science and an Art, so different perspectives and approaches to problem-solving definitely enhance your skillset.
Additionally, there is also a focus on soft skills, from getting your resume up to speed to effective communication. Each week there are dedicated sessions on how to tackle interview questions, how to sell yourself, and how to navigate opportunely the recruiting process, complementing TDI rigorous technical curriculum.
Going to the TDI was I not only enriching but also enjoyable. You come out of the program with a powerful network of top-notch data scientist, a second to none skillset and the toolkit to navigate the corporate world.
Anonymous
I attended The Data Incubator during Spring 2017. I earned a data science position with a hiring partner in the San Francisco financial district within three weeks of graduating. Below I enumerate the many aspects of The Data Incubator I found valuable.
Resume building:
Starting at the semi-finalist level, applicants are provided strategies for resume writing. With some careful thought, I was able to portray seemingly bland parts of my academic background as eye-catching resume bullet points. Time is also dedicated in the first days of the program for polishing resumes yet again before final submission to the employer-facing online resume book.
Professional head shot:
Prior to the program, Fellows and Scholars are advised to get a professional head shot. I had never done this before (or really had been aware of such services), but I realized it was an important part of going all in. While this can be expensive, Fellows who successfully join a partner company are reimbursed for the head shot (I was).
Structured curriculum and weekly miniprojects:
The data science curriculum includes lectures, daily coding challenges, and miniprojects. Weekly lectures are accompanied by IPython notebooks mixing text exposition with runnable code. There is a lot of lecture material to master every week, and persevering here helps with interviews and the miniprojects. The notebooks encapsulate the advanced features of scikit-learn, SQL, and big data tools (Hadoop, Spark), and they make for indispensable reference material after the program. The miniprojects are essentially problem sets and provide hands-on experience with these tools.
The capstone project:
This is meant to be an application of data science to a publicly available (or scrapable) data set that is ultimately presented as a web application. It is adisable to have a rough draft, or at least a strong start, on the project before beginning the program, so start thinking about this before applying. There are several upshots to doing well on the capstone: 1) You have a recent data project to talk about in interviews that is more substantive than any of the individual miniprojects, 2) Practice building a web app (e.g., with Flask) for deployment on cloud services (e.g., Heroku), 3) Practice pitching your project in weekly video updates; for these videos, I learned how to edit video/sound with Openshot and to splice in images and screen capture footage of my project.
Soft skills lectures and interview practice:
Soft skills lectures provide coaching for resume writing, onsite interviews, and salary negotiations. Weekly interview practice covers computer science and statistics problems of varying difficulty, both on pen/paper and in front of a whiteboard.
Summary:
The Data Incubator is an extremely worthwhile experience. The components of the program outlined above have a snowball-like cumulative effect at turning academics into viable industry job candidate, commensurate with the effort they put into preparation before and during the program.
September 13, 2017
Anonymous
Since I had always been in academic before taking TDI,
TDI is like a window to the industry, a bridge walking
me smoothly from the academic world to the industry one.
Through a series of activities like panel discussion and alumni party,
TDI offered me a great platform to know what kind of problems
companies are trying to solve, what skills they are looking for,
how the daily life looks like, etc. Moreover, TDI provides valuable
guidance in the whole process of job search, and last but not
the least, the chance to work with a bunch of very smart people.
March 14, 2018
Anonymous
I highly recommend this 8-weeks intensive training at The Data Incubator (TDI), because it really helped me to go deeper into data science field and get fully prepared for the essential skills to work in a big data industry.
As a PhD graduate in chemistry background, the transition from academia to industry is not easy. But fortunately, I attended TDI during Winter 2017, and I gained full stack from the program, including the cutting-edge analytics techniques, programming, machine learning, data visualization as well as business mindset. The networking with all other talented fellows is definitely a plus! Needless to say, my 1st data scientist job with a hiring partner in less than a month from graduation is the most valuable thing I got out of TDI!
March 16, 2018
Anonymous
As a recent graduate of the Winter 2018 cohort, going through the 8-week intensive data science training at The Data Incubator has taught me a great deal about various data science tools and has prepared me with the essential skills to thrive at my first data science job. I’ve gained a full data science stack, such as creating a web application, web-scraping, data cleaning, exploratory analysis and visualization, SQL, machine-learning, big data tools, and cloud computing, as well as a business mindset. More importantly, networking with and learning from other talented and brilliant fellows has taught me a lot about myself and how to become a great data scientist. More importantly, I made a lot of connections that I can see will be long term.
April 20, 2018
Anonymous
Completing miniprojects on diverse and up-to-date topics really helped me to be confident about how to apply my technical skills on solving problems in practical situations. The hands-on experience from end to end, especially the relevance of the techniques to that in industry, is going to be a long term benefit for me and certainly for any previous and current fellow.
The opportunity to have conversation and build relationship with different companies. This is not only for landing a job but more for a healthy business relationship in a long term. Getting the benefit from the bridge built up by The Data Incubator between fellows and partners is one thing. Another important goal of networking is for future communication and collaborations. Here comes our Fellows. I kept in touch with some of the fellows after we finish the program and we keep each other posted. It is invaluable having fellows experience the transition from academia to industry together including sharing thoughts and helping each other.
May 17, 2018
Anonymous
The application process can be daunting and intimidating, however, each step has its reasons. This makes each cohort learn and progress in a homogeneous pace, which is key to a successful completion of the TDI.
I was part of the D.C 2017 winter cohort and the 8 weeks were key to position myself as a Data Scientist in the industry. You share and work collaboratively with the rest of the cohort, making it invaluable because you are not only learning from the diverse curriculum but also from your peers. At the end of the day, Data Science is both a Science and an Art, so different perspectives and approaches to problem-solving definitely enhance your skillset.
Additionally, there is also a focus on soft skills, from getting your resume up to speed to effective communication. Each week there are dedicated sessions on how to tackle interview questions, how to sell yourself, and how to navigate opportunely the recruiting process, complementing TDI rigorous technical curriculum.
Going to the TDI was I not only enriching but also enjoyable. You come out of the program with a powerful network of top-notch data scientist, a second to none skillset and the toolkit to navigate the corporate world.
May 22, 2018